Data Modeling, Transformation, and Serving
Offered By: DeepLearning.AI via Coursera
Course Description
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
In this course, you’ll model, transform, and serve data for both analytics and machine learning use cases. You’ll explore various data modeling techniques for batch analytics, including normalization, star schema, data vault, and one big table, and you’ll use dbt to transform a dataset based on a star schema and one big table. You’ll also compare the Inmon vs Kimball data modeling approaches for data warehouses. You’ll model and transform a tabular dataset for machine learning purposes. You’ll also model and transform unstructured image and textual data. You’ll explore distributed processing frameworks such as Hadoop MapReduce and Spark, and perform stream processing. You’ll identify different ways of serving data for analytics and machine learning, including using views and materialized views, and you’ll describe how a semantic layer built on top of your data model can support the business. In the last week of this course, you’ll complete a capstone project where you’ll build an end-to-end data pipeline that encompasses all of the stages of the data engineering lifecycle to serve data that provides business value.
Syllabus
- Data Modeling & Transformations for Analytics
- Data Modeling & Transformations for Machine Learning
- Data Transformations & Technical Considerations
- Serving Data
Taught by
Joe Reis
Tags
Related Courses
4.0 Shades of Digitalisation for the Chemical and Process IndustriesUniversity of Padova via FutureLearn A Day in the Life of a Data Engineer
Amazon Web Services via AWS Skill Builder FinTech for Finance and Business Leaders
ACCA via edX Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera Accounting Data Analytics
Coursera