YoVDO

Carbon Aware Computing for GenAI Developers

Offered By: DeepLearning.AI via Coursera

Tags

Machine Learning Courses Cloud Computing Courses Google Cloud Platform (GCP) Courses Generative AI Courses Environmental Impact Courses Energy Efficiency Courses Carbon Footprint Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Learn how to perform model training and inference jobs with cleaner, low-carbon energy in the cloud! Learn from Nikita Namjoshi, developer advocate at Google Cloud and Google Fellow on the Permafrost Discovery Gateway, and explore how to measure the environmental impact of your machine learning jobs, and also how to optimize their use of clean electricity. 1. Query real-time electricity grid data: Explore the world map, and based on latitude and longitude coordinates, get the power breakdown of a region (e.g. wind, hydro, coal etc.) and the carbon intensity (CO2 equivalent emissions per kWh of energy consumed). 2. Train a model with low-carbon energy: Select a region that has a low average carbon intensity to upload your training job and data. Optimize even further by selecting the lowest carbon intensity region using real-time grid data from ElectricityMaps. 3. Retrieve measurements of the carbon footprint for ongoing cloud jobs. 4. Use the Google Cloud Carbon Footprint tool, which provides a comprehensive measure of your carbon footprint by estimating greenhouse gas emissions from your usage of Google Cloud. Throughout the course, you’ll work with ElectricityMaps, a free API for querying electricity grid information globally. You’ll also use Google Cloud to run a model training job in a cloud data center that is powered by low-carbon energy. Get started, and learn how to make more carbon-aware decisions as a developer!

Syllabus

  • Carbon Aware Computing for GenAI Developers
    • Learn how to perform model training and inference jobs with cleaner, low-carbon energy in the cloud! Learn from Nikita Namjoshi, developer advocate at Google Cloud and Google Fellow on the Permafrost Discovery Gateway, and explore how to measure the environmental impact of your machine learning jobs, and also how to optimize their use of clean electricity. 1. Query real-time electricity grid data: Explore the world map, and based on latitude and longitude coordinates, get the power breakdown of a region (e.g. wind, hydro, coal etc.) and the carbon intensity (CO2 equivalent emissions per kWh of energy consumed). 2. Train a model with low-carbon energy: Select a region that has a low average carbon intensity to upload your training job and data. Optimize even further by selecting the lowest carbon intensity region using real-time grid data from ElectricityMaps. 3. Retrieve measurements of the carbon footprint for ongoing cloud jobs. 4. Use the Google Cloud Carbon Footprint tool, which provides a comprehensive measure of your carbon footprint by estimating greenhouse gas emissions from your usage of Google Cloud. Throughout the course, you’ll work with ElectricityMaps, a free API for querying electricity grid information globally. You’ll also use Google Cloud to run a model training job in a cloud data center that is powered by low-carbon energy. Get started, and learn how to make more carbon-aware decisions as a developer!

Taught by

Nikita Namjoshi

Related Courses

Adobe Content Creator
Adobe via Coursera
Adobe Graphic Designer
Adobe via Coursera
The AI Awakening: Implications for the Economy and Society
Stanford University via Coursera
AI Engineering
Scrimba via Coursera
AI Engineering
Scrimba via Coursera