YoVDO

Machine Learning: K-Nearest Neighbors

Offered By: Codecademy

Tags

Machine Learning Courses Supervised Learning Courses Classification Courses Data Preparation Courses Model Evaluation Courses K-Nearest Neighbors Courses

Course Description

Overview

Implement and assess the K-Nearest Neighbors algorithm.

Continue your Machine Learning journey with Machine Learning: K-Nearest Neighbors (KNN). Learn how to classify unknown data points based on their similarity to other, known, data points. Use distance and proximity to validate your predictions, and get started with classification techniques.


* Prepare data for a KNN model

* Explain distance and proximity

* Implement and assess a KNN model



Syllabus

  • Classification: K-Nearest Neighbors: K-Nearest Neighbors is a supervised machine learning algorithm for classification. You will implement and test this algorithm on several datasets.
    • Lesson: Distance Formula
    • Article: Normalization
    • Article: Training Set vs Validation Set vs Test Set
    • Lesson: K-Nearest Neighbors
    • Quiz: K-Nearest Neighbors
    • Project: Cancer Classifier
    • Informational: Next Steps

Taught by

Kenny Lin

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent