YoVDO

Machine Learning: K-Nearest Neighbors

Offered By: Codecademy

Tags

Machine Learning Courses Supervised Learning Courses Classification Courses Data Preparation Courses Model Evaluation Courses K-Nearest Neighbors Courses

Course Description

Overview

Implement and assess the K-Nearest Neighbors algorithm.

Continue your Machine Learning journey with Machine Learning: K-Nearest Neighbors (KNN). Learn how to classify unknown data points based on their similarity to other, known, data points. Use distance and proximity to validate your predictions, and get started with classification techniques.


* Prepare data for a KNN model

* Explain distance and proximity

* Implement and assess a KNN model



Syllabus

  • Classification: K-Nearest Neighbors: K-Nearest Neighbors is a supervised machine learning algorithm for classification. You will implement and test this algorithm on several datasets.
    • Lesson: Distance Formula
    • Article: Normalization
    • Article: Training Set vs Validation Set vs Test Set
    • Lesson: K-Nearest Neighbors
    • Quiz: K-Nearest Neighbors
    • Project: Cancer Classifier
    • Informational: Next Steps

Taught by

Kenny Lin

Related Courses

Macroeconometric Forecasting
International Monetary Fund via edX
Machine Learning With Big Data
University of California, San Diego via Coursera
Data Science at Scale - Capstone Project
University of Washington via Coursera
Structural Equation Model and its Applications | 结构方程模型及其应用 (粤语)
The Chinese University of Hong Kong via Coursera
Data Science in Action - Building a Predictive Churn Model
SAP Learning