YoVDO

Cifar-10 Image Classification with Keras and Tensorflow 2.0

Offered By: Coursera Project Network via Coursera

Tags

Keras Courses TensorFlow Courses Image Classification Courses

Course Description

Overview

In this guided project, we will build, train, and test a deep neural network model to classify low-resolution images containing airplanes, cars, birds, cats, ships, and trucks in Keras and Tensorflow 2.0. We will use Cifar-10 which is a benchmark dataset that stands for the Canadian Institute For Advanced Research (CIFAR) and contains 60,000 32x32 color images. This project is practical and directly applicable to many industries.

Syllabus

  • Project Overview
    • In this guided project, we will build, train, and test a deep neural network model to classify low-resolution images containing airplanes, cars, birds, cats, ships, and trucks in Keras and Tensorflow 2.0. We will use Cifar-10 which is a benchmark dataset that stands for the Canadian Institute For Advanced Research (CIFAR) and contains 60,000 32x32 color images. This project is practical and directly applicable to many industries.

Taught by

Ryan Ahmed

Related Courses

Clasificación de imágenes: ¿cómo reconocer el contenido de una imagen?
Universitat Autònoma de Barcelona (Autonomous University of Barcelona) via Coursera
Core ML: Machine Learning for iOS
Udacity
Fundamentals of Deep Learning for Computer Vision
Nvidia via Independent
Computer Vision and Image Analysis
Microsoft via edX
Using GPUs to Scale and Speed-up Deep Learning
IBM via edX