YoVDO

MLOps2 (Azure): Data Pipeline Automation & Optimization using Microsoft Azure Machine Learning

Offered By: statistics.com via edX

Tags

Microsoft Azure Courses Machine Learning Courses DevOps Courses

Course Description

Overview

Most data science projects fail. There are various reasons why, but one of the primary reasons is the challenge of deployment. One piece to the deployment puzzle is understanding how to automate your pipeline’s functions and continuously optimize its performance, which is why we developed this course, MLOps2 (Azure): Data Pipeline Automation & Optimization using Microsoft Azure Machine Learning. In this course you will learn how to set up automated monitoring of your data pipeline for prediction. Data drift, model drift and feedback loops can impair model performance and model stability, and you will learn how to monitor for those phenomena. You will also learn about setting triggers and alarms, so that operators can deal with problems with model instability. You will also cover ethical issues in machine learning and the risks they pose, and learn about the "Responsible Data Science" framework.


Syllabus

Week 1 – Drift and Feedback Loops

  • Module 1: Training Versus Inference Pipelines
  • Module 2: Drift & Feedback Loops

Week 2 – Triggers, Alarms & Model Stability

  • Module 3: Triggers & Alarms
  • Module 4: Model Stability

Week 3 – CI/CD (Continuous Integration & Continuous Deployment/Delivery)

  • Module 5: CI/CD

Week 4 – Model Security and Responsible AI

  • Module 6: Responsible AI

Taught by

Peter Bruce, Evan Wimpey, Vic Diloreto, Laura Lancheros, Greg Carmean, Bryce Pilcher, Kuber Deokar and Janet Dobbins

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent