YoVDO

Microsoft Azure Data Scientist Associate (DP-100) Exam Prep Professional Certificate

Offered By: Microsoft via Coursera

Tags

DP-100: Designing and Implementing a Data Science Solution on Azure Courses Data Science Courses Machine Learning Courses Python Courses Cloud Computing Courses Microsoft Azure Courses Apache Spark Courses Model Deployment Courses Azure Databricks Courses

Course Description

Overview

This Professional Certificate is intended for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. This Professional Certificate teaches learners how to create end-to-end solutions in Microsoft Azure. They will learn how to manage Azure resources for machine learning; run experiments and train models; deploy and operationalize machine learning solutions; and implement responsible machine learning. They will also learn to use Azure Databricks to explore, prepare, and model data; and integrate Databricks machine learning processes with Azure Machine Learning. This program consists of 5 courses to help prepare you to take the Exam DP-100: Designing and Implementing a Data Science Solution on Azure. The certification exam is an opportunity to prove knowledge and expertise operate machine learning solutions at cloud scale using Azure Machine Learning. This Professional Certificate teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. Each course teaches you the concepts and skills that are measured by the exam. By the end of this program, you will be ready to take the DP-100: Designing and Implementing a Data Science Solution on Azure.

Syllabus

Course 1: Create Machine Learning Models in Microsoft Azure
- Offered by Microsoft. Machine learning is the foundation for predictive modeling and artificial intelligence. If you want to learn about ... Enroll for free.

Course 2: Microsoft Azure Machine Learning for Data Scientists
- Offered by Microsoft. Machine learning is at the core of artificial intelligence, and many modern applications and services depend on ... Enroll for free.

Course 3: Build and Operate Machine Learning Solutions with Azure
- Offered by Microsoft. Azure Machine Learning is a cloud platform for training, deploying, managing, and monitoring machine learning models. ... Enroll for free.

Course 4: Perform data science with Azure Databricks
- Offered by Microsoft. In this course, you will learn how to harness the power of Apache Spark and powerful clusters running on the Azure ... Enroll for free.

Course 5: Prepare for DP-100: Data Science on Microsoft Azure Exam
- Offered by Microsoft. Microsoft certifications give you a professional advantage by providing globally recognized and industry-endorsed ... Enroll for free.


Courses

  • 0 reviews

    12 hours 35 minutes

    View details
    Machine learning is the foundation for predictive modeling and artificial intelligence. If you want to learn about both the underlying concepts and how to get into building models with the most common machine learning tools this path is for you. In this course, you will learn the core principles of machine learning and how to use common tools and frameworks to train, evaluate, and use machine learning models. This course is designed to prepare you for roles that include planning and creating a suitable working environment for data science workloads on Azure. You will learn how to run data experiments and train predictive models. In addition, you will manage, optimize, and deploy machine learning models into production. From the most basic classical machine learning models, to exploratory data analysis and customizing architectures, you’ll be guided by easy -to-digest conceptual content and interactive Jupyter notebooks. If you already have some idea what machine learning is about or you have a strong mathematical background this course is perfect for you. These modules teach some machine learning concepts, but move fast so they can get to the power of using tools like scikit-learn, TensorFlow, and PyTorch. This learning path is also the best one for you if you're looking for just enough familiarity to understand machine learning examples for products like Azure ML or Azure Databricks. It's also a good place to start if you plan to move beyond classic machine learning and get an education in deep learning and neural networks, which we only introduce here. This program consists of 5 courses to help prepare you to take the Exam DP-100: Designing and Implementing a Data Science Solution on Azure. The certification exam is an opportunity to prove knowledge and expertise operate machine learning solutions at cloud scale using Azure Machine Learning. This specialization teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure . Each course teaches you the concepts and skills that are measured by the exam.
  • 0 reviews

    1 day 1 hour 53 minutes

    View details
    In this course, you will learn how to harness the power of Apache Spark and powerful clusters running on the Azure Databricks platform to run data science workloads in the cloud. This is the fourth course in a five-course program that prepares you to take the DP-100: Designing and Implementing a Data Science Solution on Azurec ertification exam. The certification exam is an opportunity to prove knowledge and expertise operate machine learning solutions at a cloud-scale using Azure Machine Learning. This specialization teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. Each course teaches you the concepts and skills that are measured by the exam. This Specialization is intended for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. It teaches data scientists how to create end-to-end solutions in Microsoft Azure. Students will learn how to manage Azure resources for machine learning; run experiments and train models; deploy and operationalize machine learning solutions, and implement responsible machine learning. They will also learn to use Azure Databricks to explore, prepare, and model data; and integrate Databricks machine learning processes with Azure Machine Learning.
  • 0 reviews

    11 hours 24 minutes

    View details
    Machine learning is at the core of artificial intelligence, and many modern applications and services depend on predictive machine learning models. Training a machine learning model is an iterative process that requires time and compute resources. Automated machine learning can help make it easier. In this course, you will learn how to use Azure Machine Learning to create and publish models without writing code. This is the second course in a five-course program that prepares you to take the DP-100: Designing and Implementing a Data Science Solution on Azurecertification exam. The certification exam is an opportunity to prove knowledge and expertise operate machine learning solutions at a cloud-scale using Azure Machine Learning. This specialization teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. Each course teaches you the concepts and skills that are measured by the exam. This Specialization is intended for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. It teaches data scientists how to create end-to-end solutions in Microsoft Azure. Students will learn how to manage Azure resources for machine learning; run experiments and train models; deploy and operationalize machine learning solutions, and implement responsible machine learning. They will also learn to use Azure Databricks to explore, prepare, and model data; and integrate Databricks machine learning processes with Azure Machine Learning.
  • 0 reviews

    1 day 7 hours 26 minutes

    View details
    Azure Machine Learning is a cloud platform for training, deploying, managing, and monitoring machine learning models. In this course, you will learn how to use the Azure Machine Learning Python SDK to create and manage enterprise-ready ML solutions. This is the third course in a five-course program that prepares you to take the DP-100: Designing and Implementing a Data Science Solution on Azurecertification exam. The certification exam is an opportunity to prove knowledge and expertise operate machine learning solutions at a cloud-scale using Azure Machine Learning. This specialization teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. Each course teaches you the concepts and skills that are measured by the exam. This Specialization is intended for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. It teaches data scientists how to create end-to-end solutions in Microsoft Azure. Students will learn how to manage Azure resources for machine learning; run experiments and train models; deploy and operationalize machine learning solutions, and implement responsible machine learning. They will also learn to use Azure Databricks to explore, prepare, and model data; and integrate Databricks machine learning processes with Azure Machine Learning.
  • 0 reviews

    9 hours 18 minutes

    View details
    Microsoft certifications give you a professional advantage by providing globally recognized and industry-endorsed evidence of mastering skills in digital and cloud businesses.​​ In this course, you will prepare to take the DP-100 Azure Data Scientist Associate certification exam. You will refresh your knowledge of how to plan and create a suitable working environment for data science workloads on Azure, run data experiments, and train predictive models. In addition, you will recap on how to manage, optimize, and deploy machine learning models into production. You will test your knowledge in a practice exam​ mapped to all the main topics covered in the DP-100 exam, ensuring you’re well prepared for certification success. You will also get a more detailed overview of the Microsoft certification program and where you can go next in your career. You’ll also get tips and tricks, testing strategies, useful resources, and information on how to sign up for the DP-100 proctored exam. By the end of this course, you will be ready to sign-up for and take the DP-100 exam.​ This is the fifth course in a five-course program that prepares you to take the DP-100: Designing and Implementing a Data Science Solution on Azure certification exam. The certification exam is an opportunity to prove knowledge and expertise operate machine learning solutions at a cloud-scale using Azure Machine Learning. This specialization teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. Each course teaches you the concepts and skills that are measured by the exam. This Specialization is intended for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. It teaches data scientists how to create end-to-end solutions in Microsoft Azure. Students will learn how to manage Azure resources for machine learning; run experiments and train models; deploy and operationalize machine learning solutions, and implement responsible machine learning. They will also learn to use Azure Databricks to explore, prepare, and model data; and integrate Databricks machine learning processes with Azure Machine Learning.

Taught by

Microsoft

Tags

Related Courses

Big Data
University of Adelaide via edX
Advanced Data Science with IBM
IBM via Coursera
Analysing Unstructured Data using MongoDB and PySpark
Coursera Project Network via Coursera
Apache Spark for Data Engineering and Machine Learning
IBM via edX
Apache Spark (TM) SQL for Data Analysts
Databricks via Coursera