Autoscaling TensorFlow Model Deployments with TF Serving and Kubernetes
Offered By: Google via Google Cloud Skills Boost
Course Description
Overview
AutoML Vision helps developers with limited ML expertise train high quality image recognition models. In this hands-on lab, you will learn how to train a custom model to recognize different types of clouds (cumulus, cumulonimbus, etc.).
Syllabus
- GSP777
- Overview
- Setup and requirements
- Lab tasks
- Task 1. Getting lab files
- Task 2. Creating a GKE cluster
- Task 3. Deploying ResNet101
- Task 4. Creating ConfigMap
- Task 5. Creating TensorFlow Serving deployment
- Task 6. Exposing the deployment
- Task 7. Configuring horizontal pod autoscaler
- Task 8. Testing the model
- Task 9. Installing Locust
- Task 10. Starting a load test
- Task 11. Monitoring the load test
- Task 12. Stopping the load test
- Congratulations
Tags
Related Courses
Designing Highly Scalable Web Apps on Google Cloud PlatformGoogle via Coursera Elastic Google Cloud Infrastructure: Scaling and Automation
Google Cloud via Coursera Elastic Cloud Infrastructure: Scaling and Automation auf Deutsch
Google Cloud via Coursera Elastic Cloud Infrastructure: Scaling and Automation en Français
Google Cloud via Coursera Alibaba Cloud Native Solutions and Container Service
Alibaba via Coursera