Automatic Model Tuning in Amazon SageMaker (Traditional Chinese)
Offered By: Amazon Web Services via AWS Skill Builder
Course Description
Overview
了解如何使用 Amazon SageMaker 進行 ML 模型調整,從選取正確的元件到調整過程。我們將向您展示如何調整超參數以在模型內取得最佳配合,以及如何避免其他傳統配合方法的高成本。Amazon SageMaker 使用高斯回歸和貝式最佳化,搭配預先建置的 AWS 資源和 Jupyter 筆記本來降低您的成本。我們將使用實際的 Jupyter 筆記本執行個體,整合所有這些概念和示範。
注意:本課程具有當地語系化的文字記錄/字幕。旁白是英語。
若要顯示字幕,請按一下播放器右下角的 CC 按鈕。
Tags
Related Courses
Amazon SageMaker: Build an Object Detection Model Using Images Labeled with Ground Truth (Thai)Amazon Web Services via AWS Skill Builder Amazon SageMaker: Build an Object Detection Model Using Images Labeled with Ground Truth (Vietnamese)
Amazon Web Services via AWS Skill Builder Amazon SageMaker: Build an Object Detection Model Using Images Labeled with Ground Truth (German)
Amazon Web Services via AWS Skill Builder Amazon SageMaker: Build an Object Detection Model Using Images Labeled with Ground Truth (Korean)
Amazon Web Services via AWS Skill Builder Amazon SageMaker: Build an Object Detection Model Using Images Labeled with Ground Truth (Simplified Chinese)
Amazon Web Services via AWS Skill Builder