YoVDO

The AI Engineer Path

Offered By: Scrimba

Tags

Generative AI Courses Object Detection Courses Vector Databases Courses Embeddings Courses Text to Speech Courses Hugging Face Courses

Course Description

Overview

Build apps powered by generative AI - an essential 2024 skill for product teams at startups, agencies, and large corporations.
  • Vector databases
  • Agents
  • LangChain
  • Embeddings
  • Hugging Face
  • OpenAI API basics
  • Text-to-speech
  • Image transformation
  • In-browser models
  • Object detection
  • Deployment with Cloudflare
  • Cloudflare Workers
  • RAG
  • Prompt engineering
  • Assistants API
  • Dall·E 3
  • The Reason+Act paradigm
  • OpenAI function calling
  • AI safety
  • Fine-tuning
  • Prompt injections
  • Tokens
  • Freq. & pres. penalties
  • Few shot approach
  • Temperature
  • Roles
  • ChatGPT
  • GPT Vision
  • AI Multimodality
  • Ollama
  • Running local models

Syllabus

  • Intro to AI Engineering
    • 1. Welcome to The AI Engineer Path!
    • 2. AI Engineering basics
    • 3. The code so far
    • 4. Polygon API sign-up & key
    • 5. Get an OpenAI API Key
    • 6. Overview of how the API works
    • 7. An API call: OpenAI dependency
    • 8. An API call: Instance and model
    • 9. An API call: The messages array
    • 10. A quick word about models
    • 11. Prompt Engineering and a challenge
    • 12. Adding AI to the App
    • 13. Tokens
    • 14. Playground
    • 15. Temperature
    • 16. The "Few Shot" Approach
    • 17. Adding Examples
    • 18. Stop Sequence
    • 19. Frequency and Presence Penalties
    • 20. Fine-tuning
    • 21. Creating Images with the DALL·E 3 API
    • 22. Intro to AI Safety
    • 23. Safety Best Practices
    • 24. Solo Project - PollyGlot
    • 25. You made it!
  • Deploying AI Apps with Cloudflare
    • 1. Learn secure & robust deployment strategies
    • 2. Create a Cloudflare worker
    • 3. Connect your worker to OpenAI
    • 4. Update client side data fetching
    • 5. Handle CORS and preflight requests
    • 6. OpenAI API requests & responses
    • 7. Create an AI Gateway
    • 8. Error handling
    • 9. Create & deploy the Polygon API worker
    • 10. Fetch the stock data
    • 11. Download files and push to GitHub
    • 12. Deploy your site with Cloudflare Pages
    • 13. Custom domains with Cloudflare
    • 14. Recap & next steps
  • Open-source AI Models
    • 1. Open source vs closed source
    • 2. Intro To HuggingFace.js Inference 🤗
    • 3. Text To Speech With HuggingFace.js Inference 🤗
    • 4. Transforming Images with HuggingFace.js Inference 🤗
    • 5. Finding Free Models With The HuggingFace.js Hub 🤗
    • 6. AI Models In The Browser With Transformers.js
    • 7. Download and Run AI Models on Your Computer with Ollama
    • 8. Section Recap
  • Embeddings and Vector Databases
    • 1. Your next big step in AI engineering
    • 2. What are embeddings?
    • 3. Set up environment variables
    • 4. Create an embedding
    • 5. Challenge: Pair text with embedding
    • 6. Vector databases
    • 7. Set up your vector database with Supabase
    • 8. Store vector embeddings
    • 9. Semantic search
    • 10. Query embeddings using similarity search
    • 11. Create a conversational response using OpenAI
    • 12. Chunking text from documents
    • 13. Challenge: Split text, get vectors, insert into Supabase
    • 14. Error handling
    • 15. Query database and manage multiple matches
    • 16. AI chatbot proof of concept
    • 17. Retrieval-augmented generation (RAG)
    • 18. Solo Project: PopChoice
    • 19. You made it to the finish line!
  • AI Agents
    • 1. AI Agent Intro
    • 2. Prompt Engineering 101
    • 3. Control Response Formats
    • 4. Zooming Out
    • 5. Agent Setup
    • 6. Introduction to ReAct prompting
    • 7. Build action functions
    • 8. Write ReAct prompt - part 1 - planning
    • 9. ReAct Agent - part 2 - ReAct prompt
    • 10. ReAct Agent - part 3 - how does the "loop" work?
    • 11. ReAct Agent - part 4 - code setup
    • 12. ReAct Agent - part 5 - Plan for parsing the response
    • 13. ReAct Agent - part 6 - Parsing the Action
    • 14. ReAct Agent - part 7 - Calling the function
    • 15. ReAct Agent - part 8 - Housekeeping
    • 16. ReAct Agent - part 9 - Finally! The loop!
    • 17. OpenAI Functions Agent - part 1 - Intro
    • 18. OpenAI Functions Agent - part 2 - Demo day
    • 19. OpenAI Functions Agent - part 3 - Tools
    • 20. OpenAI Functions Agent - Part 4 - Loop Logic
    • 21. OpenAI Functions Agent - Part 5 - Setup Challenge
    • 22. OpenAI Functions Agent - Part 6 - Tool Calls
    • 23. OpenAI Functions Agent - Part 7 - Pushing to messages
    • 24. OpenAI Functions Agent - Part 8 - Adding arguments
    • 25. OpenAI Functions Agent - Part 9 - Automatic function calls
    • 26. Adding UI to agent - proof of concept
    • 27. Solo Project - AI Travel Agent
    • 28. Nice work!
  • Intro to Multimodality
    • 1. Multimodal AI
    • 2. Introduction
    • 3. Generate original images from a text prompt
    • 4. Response formats
    • 5. Prompting for image generation
    • 6. Size, quality and style
    • 7. Editing images
    • 8. Image variations
    • 9. Image generation challenge
    • 10. Image generation challenge solution
    • 11. GPT-4 with Vision
    • 12. GPT-4 with Vision - Part 2
    • 13. Image generation & Vision recap
  • OpenAI's Assistants API
    • 1. Introducing the Assistants API
    • 2. How assistants work
    • 3. Create an assistant
    • 4. Create a thread and messages
    • 5. Run your assistant
    • 6. Bring it all together
    • 7. More to explore
  • Build AI Apps with LangChain
    • 1. What you'll learn and build
    • 2. Introduction to LangChain from Jacob Lee (Lead Maintainer of LangChain.js)
    • 3. App Flow Diagrams
    • 4. Supabase Setup
    • 5. Split the text
    • 6. Split the text II
    • 7. Upload to supabase
    • 8. Starter code
    • 9. Explainer: The Standalone Question
    • 10. Aside: Prompt Templates
    • 11. Aside: Prompt Templates II
    • 12. Adding the first chain
    • 13. Retrieval
    • 14. Add StringOutputParser
    • 15. Fetching the answer: the template
    • 16. Serialize the docs
    • 17. Aside: RunnableSequence
    • 18. Aside: RunnableSequence 2
    • 19. Aside: RunnableSequence 3: RunnablePassthrough
    • 20. Super Challenge - add the RunnableSequence
    • 21. Super Challenge - solution
    • 22. Wire up the UI
    • 23. Setting up the memory
    • 24. Super Challenge: Wire up the memory
    • 25. Performance Issues Check-list
    • 26. Solo Project: Personal Assistant
    • 27. LangChain Outro
    • 28. Congrats!

Related Courses

Developing Generative AI Applications with Python
IBM via edX
Models and Platforms for Generative AI
IBM via edX
Intro to Hugging Face
Codecademy
Large Language Models: Application through Production
Databricks via edX
Applied Local Large Language Models
Pragmatic AI Labs via edX