The AI Engineer Path
Offered By: Scrimba
Course Description
Overview
Build apps powered by generative AI - an essential 2024 skill for product teams at startups, agencies, and large corporations.
- Vector databases
- Agents
- LangChain
- Embeddings
- Hugging Face
- OpenAI API basics
- Text-to-speech
- Image transformation
- In-browser models
- Object detection
- Deployment with Cloudflare
- Cloudflare Workers
- RAG
- Prompt engineering
- Assistants API
- Dall·E 3
- The Reason+Act paradigm
- OpenAI function calling
- AI safety
- Fine-tuning
- Prompt injections
- Tokens
- Freq. & pres. penalties
- Few shot approach
- Temperature
- Roles
- ChatGPT
- GPT Vision
- AI Multimodality
- Ollama
- Running local models
Syllabus
- Intro to AI Engineering
- 1. Welcome to The AI Engineer Path!
- 2. AI Engineering basics
- 3. The code so far
- 4. Polygon API sign-up & key
- 5. Get an OpenAI API Key
- 6. Overview of how the API works
- 7. An API call: OpenAI dependency
- 8. An API call: Instance and model
- 9. An API call: The messages array
- 10. A quick word about models
- 11. Prompt Engineering and a challenge
- 12. Adding AI to the App
- 13. Tokens
- 14. Playground
- 15. Temperature
- 16. The "Few Shot" Approach
- 17. Adding Examples
- 18. Stop Sequence
- 19. Frequency and Presence Penalties
- 20. Fine-tuning
- 21. Creating Images with the DALL·E 3 API
- 22. Intro to AI Safety
- 23. Safety Best Practices
- 24. Solo Project - PollyGlot
- 25. You made it!
- Deploying AI Apps with Cloudflare
- 1. Learn secure & robust deployment strategies
- 2. Create a Cloudflare worker
- 3. Connect your worker to OpenAI
- 4. Update client side data fetching
- 5. Handle CORS and preflight requests
- 6. OpenAI API requests & responses
- 7. Create an AI Gateway
- 8. Error handling
- 9. Create & deploy the Polygon API worker
- 10. Fetch the stock data
- 11. Download files and push to GitHub
- 12. Deploy your site with Cloudflare Pages
- 13. Custom domains with Cloudflare
- 14. Recap & next steps
- Open-source AI Models
- 1. Open source vs closed source
- 2. Intro To HuggingFace.js Inference ð¤
- 3. Text To Speech With HuggingFace.js Inference ð¤
- 4. Transforming Images with HuggingFace.js Inference ð¤
- 5. Finding Free Models With The HuggingFace.js Hub ð¤
- 6. AI Models In The Browser With Transformers.js
- 7. Download and Run AI Models on Your Computer with Ollama
- 8. Section Recap
- Embeddings and Vector Databases
- 1. Your next big step in AI engineering
- 2. What are embeddings?
- 3. Set up environment variables
- 4. Create an embedding
- 5. Challenge: Pair text with embedding
- 6. Vector databases
- 7. Set up your vector database with Supabase
- 8. Store vector embeddings
- 9. Semantic search
- 10. Query embeddings using similarity search
- 11. Create a conversational response using OpenAI
- 12. Chunking text from documents
- 13. Challenge: Split text, get vectors, insert into Supabase
- 14. Error handling
- 15. Query database and manage multiple matches
- 16. AI chatbot proof of concept
- 17. Retrieval-augmented generation (RAG)
- 18. Solo Project: PopChoice
- 19. You made it to the finish line!
- AI Agents
- 1. AI Agent Intro
- 2. Prompt Engineering 101
- 3. Control Response Formats
- 4. Zooming Out
- 5. Agent Setup
- 6. Introduction to ReAct prompting
- 7. Build action functions
- 8. Write ReAct prompt - part 1 - planning
- 9. ReAct Agent - part 2 - ReAct prompt
- 10. ReAct Agent - part 3 - how does the "loop" work?
- 11. ReAct Agent - part 4 - code setup
- 12. ReAct Agent - part 5 - Plan for parsing the response
- 13. ReAct Agent - part 6 - Parsing the Action
- 14. ReAct Agent - part 7 - Calling the function
- 15. ReAct Agent - part 8 - Housekeeping
- 16. ReAct Agent - part 9 - Finally! The loop!
- 17. OpenAI Functions Agent - part 1 - Intro
- 18. OpenAI Functions Agent - part 2 - Demo day
- 19. OpenAI Functions Agent - part 3 - Tools
- 20. OpenAI Functions Agent - Part 4 - Loop Logic
- 21. OpenAI Functions Agent - Part 5 - Setup Challenge
- 22. OpenAI Functions Agent - Part 6 - Tool Calls
- 23. OpenAI Functions Agent - Part 7 - Pushing to messages
- 24. OpenAI Functions Agent - Part 8 - Adding arguments
- 25. OpenAI Functions Agent - Part 9 - Automatic function calls
- 26. Adding UI to agent - proof of concept
- 27. Solo Project - AI Travel Agent
- 28. Nice work!
- Intro to Multimodality
- 1. Multimodal AI
- 2. Introduction
- 3. Generate original images from a text prompt
- 4. Response formats
- 5. Prompting for image generation
- 6. Size, quality and style
- 7. Editing images
- 8. Image variations
- 9. Image generation challenge
- 10. Image generation challenge solution
- 11. GPT-4 with Vision
- 12. GPT-4 with Vision - Part 2
- 13. Image generation & Vision recap
- OpenAI's Assistants API
- 1. Introducing the Assistants API
- 2. How assistants work
- 3. Create an assistant
- 4. Create a thread and messages
- 5. Run your assistant
- 6. Bring it all together
- 7. More to explore
- Build AI Apps with LangChain
- 1. What you'll learn and build
- 2. Introduction to LangChain from Jacob Lee (Lead Maintainer of LangChain.js)
- 3. App Flow Diagrams
- 4. Supabase Setup
- 5. Split the text
- 6. Split the text II
- 7. Upload to supabase
- 8. Starter code
- 9. Explainer: The Standalone Question
- 10. Aside: Prompt Templates
- 11. Aside: Prompt Templates II
- 12. Adding the first chain
- 13. Retrieval
- 14. Add StringOutputParser
- 15. Fetching the answer: the template
- 16. Serialize the docs
- 17. Aside: RunnableSequence
- 18. Aside: RunnableSequence 2
- 19. Aside: RunnableSequence 3: RunnablePassthrough
- 20. Super Challenge - add the RunnableSequence
- 21. Super Challenge - solution
- 22. Wire up the UI
- 23. Setting up the memory
- 24. Super Challenge: Wire up the memory
- 25. Performance Issues Check-list
- 26. Solo Project: Personal Assistant
- 27. LangChain Outro
- 28. Congrats!
Related Courses
Google Cloud AI Services Deep DiveA Cloud Guru Advanced Computer Vision with TensorFlow
DeepLearning.AI via Coursera Amazon SageMaker: Build an Object Detection Model Using Images Labeled with Ground Truth (Thai)
Amazon Web Services via AWS Skill Builder Amazon SageMaker: Build an Object Detection Model Using Images Labeled with Ground Truth (Vietnamese)
Amazon Web Services via AWS Skill Builder Amazon SageMaker: Build an Object Detection Model Using Images Labeled with Ground Truth (German)
Amazon Web Services via AWS Skill Builder