Artificial Intelligence Data Fairness and Bias
Offered By: LearnQuest via Coursera
Course Description
Overview
In this course, we will explore fundamental issues of fairness and bias in machine learning. As predictive models begin making important decisions, from college admission to loan decisions, it becomes paramount to keep models from making unfair predictions. From human bias to dataset awareness, we will explore many aspects of building more ethical models.
Syllabus
- Fairness and protections in machine learning
- Welcome to the course! In week one, we will be discussing what fairness means in the context of machine learning and what true parity means in different scenarios
- Building fair models: theory and practice
- This week we will take action against unfairness. Now that we have an understanding of fairness issues, how do we build models that do not violate them?
- Human factors: minimizing bias in data
- This week, we will tackle the human biases that enter the data collection and attribute selection processes. The goal? Removing bias before the model is built
Taught by
Sabrina Moore and Brent Summers
Related Courses
Business Considerations for 5G with Edge, IoT, and AILinux Foundation via edX FinTech for Finance and Business Leaders
ACCA via edX Ethics, Laws and Implementing an AI Solution on Microsoft Azure
Cloudswyft via FutureLearn Deep Learning and Python Programming for AI with Microsoft Azure
Cloudswyft via FutureLearn Post Graduate Certificate in Advanced Machine Learning & AI
Indian Institute of Technology Roorkee via Coursera