YoVDO

Aerial Image Segmentation with PyTorch

Offered By: Coursera Project Network via Coursera

Tags

PyTorch Courses Inference Courses

Course Description

Overview

In this 2-hour project-based course, you will be able to : - Understand the Massachusetts Roads Segmentation Dataset and you will write a custom dataset class for Image-mask dataset. Additionally, you will apply segmentation domain augmentations to augment images as well as its masks. For image-mask augmentation you will use albumentation library. You will plot the image-Mask pair. - Load a pretrained state of the art convolutional neural network for segmentation problem(for e.g, Unet) using segmentation model pytorch library. - Create train function and evaluator function which will helpful to write training loop. Moreover, you will use training loop to train the model. - Finally, we will use best trained segementation model for inference.

Syllabus

  • Project Overview
    • Understand the Segmentation Dataset and you will write a custom dataset class for Image-mask dataset. Additionally, you will apply segmentation augmentation to augment images as well as its masks. For image-mask augmentation you will use albumentation library. You will plot the image-Mask pair. Load a pretrained state of the art convolutional neural network for segmentation problem(for e.g, Unet) using segmentation model pytorch library. Create train function and evaluator function which will helpful to write training loop. Moreover, you will use training loop to train the model.

Taught by

Parth Dhameliya

Related Courses

AI Capstone Project with Deep Learning
IBM via Coursera
Apply Generative Adversarial Networks (GANs)
DeepLearning.AI via Coursera
Build Basic Generative Adversarial Networks (GANs)
DeepLearning.AI via Coursera
Build Better Generative Adversarial Networks (GANs)
DeepLearning.AI via Coursera
Classify Radio Signals with PyTorch
Coursera Project Network via Coursera